

Sable Extends Margarita Vein Continuity to 750m Along Strike, Intersects 252.01g/t AgEq over 11.3m including 889.5g/t AgEq over 1.3m

TORONTO, Sept. 12, 2018 /CNW/ - Sable Resources (TSX.V: SAE) (the "Company" or "Sable") is pleased to announce results from drillholes 9 to 12 targeting the Margarita Vein from its ongoing 12hole drill program at the Margarita Project, Chihuahua State, Mexico. Drillholes M-DDH-18-11 and M-DDH-18-12 are a 250m step-out to the northwest from previously released holes M-DDH-18-05 and M-DDH-18-07. Hole M-DDH-18-09 is located on the same section line than previously released drillhole M-DDH-18-04. Drillhole M-DDH-18-10 is located on the same section line as previously released drillholes DDH-18-06 and 08. These latest results confirm continuity of the Margarita structure over a strike length of 750m.

Highlights

M-DDH-18-09

111.5 g/t AgEg over **6.5m** from **76.8m** to **83.3m** Includina **153.1 g/t** AgEq over **3.5m** from **76.8m** to **80.3m**

M-DDH-18-11

252.01 g/t AgEg over **11.3m** from **57.35m** to **68.65m** Including 889.5 g/t AgEq over 1.3m from 62.75m to 64.05m

M-DDH-18-12 – Interval 1

98.19 q/t AgEg over 12.7m from 34.6m to 47.3m Including

243.69 g/t AgEq over **1.8m** from **35.85m** to **37.65m**

Emerging Low-Grade Secondary Halo

In addition to the high-grade Margarita structure, Sable has identified a low-grade stockwork style of mineralisation evident in numerous holes. Mineralized core from previous holes has been assayed with encouraging results.

M-DDH-18-03

50.26 g/t AgEq over **44.13**m from **128.12**m to **172.25**m Including **142.3 g/t** AgEq over **6.95**m from **162.3**m to **169.25**m

M-DDH-18-07

53.97 g/t AgEq over **7.6m** from **57.95** to **65.55**m

M-DDH-18-12

36.53 g/t AgEq over **21.35m** from **140.3m** to **161.65m**

"We are very pleased to have been able to identify this additional style of mineralization giving us a secondary lower-grade target close to surface as well as the high-grade Margarita structure." commented Ruben Padilla Vice President of Exploration for Sable. "With the first stage of drilling now complete we will evaluate our results and formulate a plan for stage 2 drilling targeting further extensions of Margarita and the other adjacent parallel veins"

ABOUT THE MARGARITA PROJECT

Acquired as part of Sable Resources Upper Level Epithermal Strategy, the Margarita Project is located in the Satevó Municipality in Chihuahua state, approximately 120km SW of the state capital of Chihuahua City, and 110km NNW of the historic Parral mining district. The Project is located 15km northwest of Sunshine Silver Corp.'s Los Gatos Project, which hosts a 256 million ounces silver-equivalent resource (Pyle. P (2018) Los Gatos Project: Epithermal silver, zinc lead discovery in south Central Chihuahua. Minera Plata Real, Los Gatos Joint Venture Presentation). Hosted in Eocene-Oligocene Volcanics, Margarita is defined by 4 veins; Margarita, El Caido, Juliana and Marie on 2 claims totally encompassed by Sunshine Silver.

ABOUT SABLE RESOURCES LTD.

Sable is a well-funded junior grassroots explorer focused on the discovery of new precious metal projects through systematic exploration in endowed terranes located in favorable, established mining jurisdictions. Sables' main focus is developing their large portfolio of new greenfields projects to resource stage utilizing their Upper Level Epithermal Strategy. Sable is actively exploring the San Juan Regional Program (48,000ha) incorporating the Don Julio Project in San Juan Province, Argentina, the Mexico Regional Program (1.5Mha), incorporating the Margarita, Vinata and El Escarpe drill ready projects and the BC Intrusion Related Program, Canada (13,600ha) incorporating the drill ready Tulox Project.

Sample Preparation and QAQC

Sample preparation was carried out by ALS Chemex de Mexico S.A. de C.V., a subsidiary of ALS Minerals, at their laboratory at Chihuahua, State of Chihuahua, Mexico. Analyses were carried out at their laboratory in North Vancouver, British Columbia, Canada. Sample preparation was by drying in an oven at a maximum temperature of 60°C, fine crushing of the sample to at least 70% passing less than 2 mm, sample splitting using a riffle splitter, and pulverizing a 250 g split to at least 85% passing 75 microns (code PREP-31).

Gold was analyzed by fire assay of a 30 g sample split with detection by atomic absorption spectrophotometer (AAS) (code Au-AA23). Multi-elements were analyzed by a four acid, near total digestion of a 1 gram sub-sample with detection by inductively coupled plasma atomic emission spectrometer (ICP-AES) for 33 elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn) (code MEICP61).

This digestion method dissolves most minerals but not all elements are quantitatively extracted in some sample matrices. Mercury was analyzed by aqua regia digestion, cold vapor extraction, and AAS detection with a lower limit of detection of 0.01 ppm (code Hg-CV41), or by inductively coupled plasma mass spectrometer (ICP-MS) with a lower limit of detection of 0.005 ppm (code Hg-MS42).

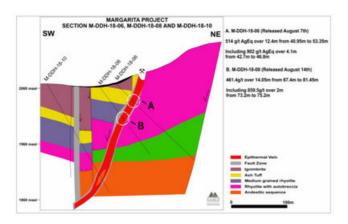
True widths are estimated to be 90% of the intercept based on vein to core angle. Detailed drill results, location plan, and sections are available from the Sable website. Silver equivalent is calculated based on USD15.50per Oz for Silver, USD 0.95 per pound for Lead and USD1.20 per pound for Zinc and USD1200 for gold, considering 100% recovery a (((Au_PPM*38.58)+(Aq_PPM*0.498)+(Pb%*20.94)+(Zn%*26.46))/0.498).

Qualified Person

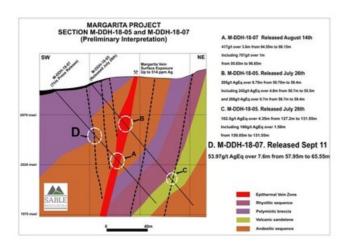
Luis Arteaga M.Sc. P.Geo. Exploration Manager for Sable Resources and the Company's Qualified Person as defined by NI 43-101 has reviewed and approved the technical information in this news release.

We seek safe harbor

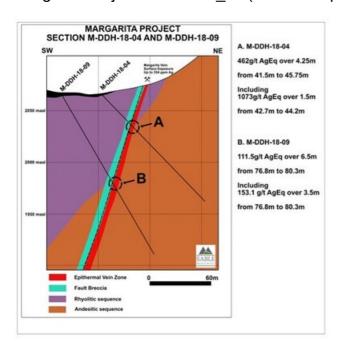
Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

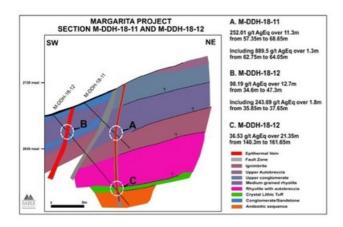

Results Table

Hole ID	From	То	Length (m)	Au (ppm)	Ag (ppm)	Pb (ppm)	Pb (%)	Zn (ppm)	Zn (%)	AgEq (ppm)
M-DDH-18-09	76.8	83.3	6.5							111.5*
Including	76.8	80.3	3.5							153.1*
	76.8	78.3	1.5	0.023	106	467	0.0467	764	0.0764	113.80
	78.3	78.8	0.5	0.116	188	1005	0.1005	1410	0.141	208.70
	78.8	80.3	1.5	0.082	162	123	0.0123	965	0.0965	173.99
	80.3	81.8	1.5	0.003	63.6	234	0.0234	980	0.098	70.02
	81.8	83.3	1.5	0.008	51.8	212	0.0212	515	0.0515	56.04
M-DDH-18-11	57.35	68.65	11.3							252.01*
Including	62.75	64.05	1.3							889.5*
	57.35	58.55	1.2	0.0005	101	365	0.0365	2550	0.255	116.12
	58.55	60.2	1.65	0.038	247	746	0.0746	2740	0.274	267.64
	60.2	61.6	1.4	0.0005	140	480	0.048	1620	0.162	150.66
	61.6	62.75	1.15	0.0005	107	1085	0.1085	2140	0.214	122.97
	62.75	63.25	0.5	0.013	674	1630	0.163	5860	0.586	713.00
	63.25	64.05	0.8	0.048	951	3100	0.31	6040	0.604	999.85
	64.05	65.65	1.6	0.027	212	1185	0.1185	4030	0.403	240.49
	65.65	66.25	0.6	0.016	114	1230	0.123	3970	0.397	141.51
	66.25	67.1	0.85	0.039	123	430	0.043	1780	0.178	137.29
	67.1	67.75	0.65	0.002	51.4	297	0.0297	3870	0.387	73.37
	67.75	68.65	0.9	0.015	110	941	0.0941	4260	0.426	137.75
M-DDH-18-12	34.6	47.3	12.7							98.19*
Including	35.85	37.65	1.8							243.69*
	34.6	35.85	1.25	0.0005	43.3	130	0.013	316	0.0316	45.56
	35.85	36.6	0.75	0.02	403	650	0.065	1320	0.132	414.30
	36.6	37.1	0.5	0.0005	105	49.3	0.00493	757	0.0757	109.27
	37.1	37.65	0.55	0.003	125	165.5	0.01655	1380	0.138	133.26
	37.65	39.65	2	0.0005	71.5	160	0.016	1080	0.108	77.95
	39.65	41.15	1.5	0.0005	96.1	133	0.0133	587	0.0587	99.82
	41.15	42.7	1.55	0.0005	94.3	130	0.013	479	0.0479	97.43
	42.7	44.2	1.5	0.0005	88.4	76.9	0.00769	351	0.0351	90.63
	44.2	45.75	1.55	0.0005	58.8	28.8	0.00288	442	0.0442	61.31
	45.75	47.3	1.55	0.0005	40.1	18.4	0.00184	190	0.019	41.23
	.00			0.0000			0.00.0.		0.0.0	20
M-DDH-18-12	140.3	161.65	21.35							36.53*
	140.3	141.8	1.5	0.0005	14.85	88.2	0.00882	642	0.0642	18.67
	141.8	143.35	1.55	0.002	25.3	136	0.0136	2510	0.251	39.36
	143.35	144.85	1.5	0.003	34.2	36.9	0.00369	1600	0.16	43.09
	144.85	146.35	1.5	0.003	21.6	33.4	0.00334	1020	0.102	27.39
	146.35	147.85	1.5	0.009	16	50	0.005	621	0.0621	20.21
	147.85	148.65	0.8	0.009	27.5	30.9	0.00309	367	0.0367	30.28
	148.65	149.15	0.5	0.007	30.9	162	0.0162	449	0.0449	34.51
	149.15	149.7	0.55	0.003	35.5	104	0.0104	763	0.0763	40.22
	149.7	150.6	0.9	0.011	21	80.2	0.00802	605	0.0605	25.40
	150.6	151.5	0.9	0.007	14.55	141.5	0.01415	1920	0.192	25.89
	151.5	152.5	1	0.015	19.65	94.3	0.00943	1260	0.126	27.90
	152.5	153.45	0.95	0.028	25	167.5	0.01675	1070	0.107	33.56
	153.45	154.4	0.95	0.072	58.1	1320	0.132	1940	0.194	79.54
			1.15		!	!	l		!	!


	155.55	156.35	0.8	0.01	24.3	1725	0.1725	1100	0.11	38.17
	156.35	157.85	1.5	0.002	15.45	180	0.018	857	0.0857	20.92
	157.85	158.6	0.75	0.014	12.45	109	0.0109	584	0.0584	17.10
	158.6	160.1	1.5	0.046	13.85	252	0.0252	727	0.0727	22.34
	160.1	161.65	1.55	0.014	10.05	125	0.0125	597	0.0597	14.83
M-DDH-18-12	128.12	172.25	44.13							50.26*
	128.12	129.57	1.45	0.0005	82.5	505	0.0505	1470	0.147	92.47
	129.57	130.37	0.8	0.0005	29.6	206	0.0206	614	0.0614	33.77
	130.37	131.53	1.16	0.0005	11.4	74.5	0.00745	404	0.0404	13.90
	131.53	133.03	1.5	0.0005	6.53	37.6	0.00376	163	0.0163	7.59
	133.03	134.53	1.5	0.0005	9.21	41.8	0.00418	279	0.0279	10.91
	134.53	135.86	1.33	0.0005	18.45	90.8	0.00908	519	0.0519	21.63
	135.86	137.4	1.54	0.0005	29.6	245	0.0245	882	0.0882	35.36
	137.4	138.2	0.8	0.0005	32.9	169.5	0.01695	603	0.0603	36.86
	138.2	140.05	1.85	0.0005	47.6	395	0.0395	641	0.0641	52.71
	140.05	141.55	1.5	0.0005	27.6	305	0.0305	1080	0.108	34.66
	141.55	142.05	0.5	0.0005	46.1	864	0.0864	1300	0.13	56.68
	142.05	143.55	1.5	0.0005	51.5	213	0.0213	183	0.0183	53.41
	143.55	144.8	1.25	0.0005	52.6	422	0.0422	2250	0.225	66.37
	144.8	145.9	1.1	0.0005	11.5	197	0.0197	877	0.0877	17.03
	145.9	147.4	1.5	0.0005	15.75	138	0.0138	734	0.0734	20.27
	147.4	148.9	1.5	0.0005	3.68	8	0.0008	140	0.014	4.50
	148.9	150.4	1.5	0.001	1.54	16.6	0.00166	133	0.0133	2.39
	150.4	151.9	1.5	0.004	4.95	9.1	0.00091	131	0.0131	5.99
	151.9	153.4	1.5	0.0005	35.2	194	0.0194	330	0.033	37.81
	153.4	154.7	1.3	0.007	3.78	6.4	0.00064	98	0.0098	4.87
	154.7	155.6	0.9	0.0005	8.44	81.1	0.00811	146	0.0146	9.60
	155.6	157.1	1.5	0.017	24.4	425	0.0425	1430	0.143	35.10
	157.1	158.6	1.5	0.048	36.2	475	0.0475	2850	0.285	57.06
	158.6	160.1	1.5	0.011	17.1	399	0.0399	931	0.0931	24.58
	160.1	160.95	0.85	0.044	62.3	254	0.0254	542	0.0542	69.66
	160.95	162.3	1.35	0.0005	50.4	133	0.0133	108	0.0108	51.57
	162.3	163.3	1	0.003	207	196	0.0196	50	0.005	208.32
	163.3	164.3	1	0.002	223	304	0.0304	91	0.0091	224.92
	164.3	165.8	1.5	0.0005	93.5	126	0.0126	21	0.0021	94.18
	165.8	167.3	1.5	0.016	134	738	0.0738	69	0.0069	138.71
	167.3	168.75	1.45	0.0005	101	254	0.0254	41	0.0041	102.32
	168.75	169.25	0.5	0.042	101	1800	0.18	825	0.0825	116.21
	169.25	170.75	1.5	0.0005	58.2	188	0.0188	160	0.016	59.88
	170.75	172.25	1.5	0.0005	23.4	153.5	0.01535	45	0.0045	24.32
M-DDH-18-07	57.95	65.55	7.6							53.97*
	57.95	59.55	1.6	0.0005	16.5	63.1	0.00631	855	0.0855	21.35
	59.55	61	1.45	0.0005	21.2	65.1	0.00651	809	0.0809	25.81
	61	62.15	1.15	0.0005	42.3	95.8	0.00958	565	0.0565	45.74
	62.15	64.05	1.9	0.0005	103	384	0.0384	1090	0.109	110.44
	020		-							

^{*} Weighted average composites. All other intervals are actual results.


Samples used for selected highlighted higher-grade zones within the main reported interval


Margarita Project Section 06_08 (CNW Group/Sable Resources Ltd.)

Margarita Project Section 05_07 (CNW Group/Sable Resources Ltd.)

Margarita Project Section 04_09 (CNW Group/Sable Resources Ltd.)

Margarita Project Section 11 12 (CNW Group/Sable Resources Ltd.)

SOURCE Sable Resources Ltd.

View original content to download multimedia: http://www.newswire.ca/en/releases/archive/September2018/12/c4903.html

%SEDAR: 00008665E

For further information: Tom Obradovich, President & CEO, tobradovich@sympatico.ca, Tel (416) 985-7140; Or visit sableresources.com

CO: Sable Resources Ltd.

CNW 07:00e 12-SEP-18